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The contribution of wildfire to PM2.5 trends 
in the USA

Marshall Burke1,2,3,7 ✉, Marissa L. Childs4,7, Brandon de la Cuesta2, Minghao Qiu5, Jessica Li2, 
Carlos F. Gould5, Sam Heft-Neal2 & Michael Wara1,6

Steady improvements in ambient air quality in the USA over the past several decades, 
in part a result of public policy1,2, have led to public health benefits1–4. However, recent 
trends in ambient concentrations of particulate matter with diameters less than 
2.5 μm (PM2.5), a pollutant regulated under the Clean Air Act1, have stagnated or begun 
to reverse throughout much of the USA5. Here we use a combination of ground- and 
satellite-based air pollution data from 2000 to 2022 to quantify the contribution of 
wildfire smoke to these PM2.5 trends. We find that since at least 2016, wildfire smoke 
has influenced trends in average annual PM2.5 concentrations in nearly three-quarters 
of states in the contiguous USA, eroding about 25% of previous multi-decadal 
progress in reducing PM2.5 concentrations on average in those states, equivalent to 
4 years of air quality progress, and more than 50% in many western states. Smoke 
influence on trends in the number of days with extreme PM2.5 concentrations is 
detectable by 2011, but the influence can be detected primarily in western and 
mid-western states. Wildfire-driven increases in ambient PM2.5 concentrations  
are unregulated under current air pollution law6 and, in the absence of further 
interventions, we show that the contribution of wildfire to regional and national air 
quality trends is likely to grow as the climate continues to warm.

The observed multi-decadal decline in ambient air pollutant concentra-
tions across the USA has been widely celebrated, both for its demon-
strated human health benefits and because it was substantially a result 
of bipartisan public policy choices: in particular the Clean Air Act and 
its amendments1–3. Recent data, however, indicate that these air qual-
ity gains are stagnating or even reversing across nearly all of the USA 
(Fig. 1), raising questions about whether past progress is being durably 
undone, what is causing this and if or how policy should respond.

Here we study the contribution of growing wildfire activity to recent 
trends in concentrations of ambient particulate matter with diameters 
less than 2.5 μm (PM2.5). Wildfires have increased in size and severity in 
recent years, a consequence of a changing climate that has made fuels 
more arid and flammable and resulting fires larger and more severe7–9, 
a century of fire suppression in western forests that contributed to 
fuel abundance10 and an increase in fire ignitions caused by humans11. 
Increased fire activity has in turn led to increases in the emission and 
formulation of many air pollutants, including ‘criteria’ pollutants such 
as PM2.5. These pollutants are regulated in the USA under the Clean Air 
Act and have been shown to have a wide array of negative health effects12. 
Studies using data from before 2016 concluded that the wildfire con-
tribution to measured PM2.5 concentrations was apparent mainly in the 
northwest of the contiguous USA (CONUS), but disagreed over whether 
enhancements in this region were observable in average annual concen-
trations or only in extreme daily concentrations13,14. Studies that include 
more recent data from the very active 2018 and/or 2020 wildfire seasons 

conclude that the imprint of wildfire smoke on surface average and 
extreme PM2.5 concentrations has expanded substantially in geographic 
scope, with observed enhancements throughout much of the western 
USA5,15,16. Research also suggests that wildfire smoke is increasingly 
implicated in ‘exceptional event’ designations, or days on which regula-
tors exempt observed pollutant concentrations from determination of 
regulatory attainment under the Clean Air Act because the source of 
the pollution was deemed beyond control of local authorities17.

Yet wildfires are clearly not the only possible contributor to recent 
air quality trends. A large body of work shows how changes in meth-
ods of production in the energy, manufacturing and other industrial  
sectors, in agricultural production practices, in regulatory enforcement 
and changes in global trade patterns have shaped short- and long-term 
variation in air pollution concentrations throughout the USA5,18–20. 
Accurate and up-to-date characterization of the drivers of recent air 
quality trends is important to inform policy decisions about how to 
regulate or improve air quality, and whether interventions should be 
targeted to specific regions or sectors.

To isolate the contribution of wildfire smoke to pollution concentra-
tions, we build on earlier work14,16 and use a combination of ground- and 
satellite-based measurements to isolate the component of surface 
PM2.5 concentrations attributable to wildfire smoke. Specifically, our 
primary analysis combines daily data from thousands of regulatory 
pollution monitoring stations from across the USA with satellite- and 
analyst-based estimates of when and where wildfire smoke is in the air 
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(Extended Data Fig. 1). To analyse trends in total PM2.5, we use monitor-
ing data from 2000 to 2022. We analyse the smoke contribution to total 
PM2.5 beginning in 2006, when smoke plume data become available.  
To estimate smoke PM2.5 over the 2006–2022 period, we calculate daily 
PM2.5 anomalies from season- and time period-specific median con-
centrations at each location and attribute these anomalies to wildfire 
if satellite images indicate a wildfire plume is overhead on a given day 
(Methods). For this approach to successfully isolate wildfire’s contribu-
tion to surface PM2.5, it must be the case that satellite-derived plume 
estimates accurately describe the location of wildfire smoke, and that 
the presence or absence of a plume is not systematically correlated 
with other non-wildfire sources of variation in surface PM2.5. Using 
measurement data on the chemical components of PM2.5 and panel 
regression, ref. 16 shows that both these conditions are likely to hold. 
Non-wildfire PM2.5 on a given day can then be calculated as the difference 
between total observed and wildfire-attributed PM2.5. Total, wildfire or 
non-wildfire PM2.5 can be spatially or temporally aggregated to char-
acterize wildfire’s contribution to average or extreme daily PM2.5 con-
centrations. We focus on two measures of ambient air quality: annual 
average PM2.5 concentrations, calculated as the simple average of daily 
PM2.5 concentrations at a given station in a year, and the proportion of 
days above 35 μg m−3 at each station over 1 year, a concentration thresh-
old used at present as part of Clean Air Act attainment designations.

To characterize trends in total or non-smoke PM2.5 averages and 
extremes, and to test whether trends in each have changed over time, 
we use formal tests to identify trend breaks to divide our sample into 
‘early’ and ‘recent’ periods21, estimate trends in pollutant concentra-
tions in each period and then test whether trends are statistically dif-
ferent (P < 0.05) between the two periods, propagating uncertainty 
in both the trend break and the estimated slopes using a bootstrap 
procedure (Methods). CONUS-wide data indicate a trend break around 
2016 (median estimate 2015.6) for annual average PM2.5, and in 2012 
(median estimate 2011.99) for extreme daily PM2.5, consistent with 
visual evidence (Fig. 1 and Extended Data Figs. 2 and  3).

To test whether trends in average or extreme PM2.5 are different 
between periods, we fit linear panel regressions to all stations in each 
geographic region of interest in each period (typically, state), allowing 
average pollution levels to differ across stations but estimating a com-
mon trend across all stations (Methods). Using total PM2.5, we identify 
‘reversals’, states in which PM2.5 was declining in the early period but 
increasing in the recent period (P < 0.05), or ‘stagnations’, states where 
trends in total PM2.5 were slower in the recent period but either still 
declining or not significantly increasing. Then using our measures of 
smoke PM2.5, we identify ‘smoke-influenced’ regions as those where 
recent-period trends in total PM2.5 were statistically distinguishable 
from trends in non-smoke PM2.5 (Methods and Extended Data Table 1).

We test robustness to alternate statistical approaches to estimat-
ing pollution trends on either side of the break, to exclusion of recent 
extreme wildfire years and to different ways of constructing the smoke 
PM2.5 data. Because individual stations come online at different times 
and report at different daily frequencies, we also test robustness to sam-
ple restrictions that limit stations to those reporting more frequently 
and/or reporting for fewer years in the sample (Methods). Finally, we 
note that trends in a state or region’s PM2.5 concentrations need not nec-
essarily reflect trends in that region’s emissions of particulates and their 
precursors, given that wildfire smoke often travels long distances22.

In 41 out of 48 states in CONUS, average annual PM2.5 concentrations 
were declining over the early period (2000 to roughly 2016, depending 
on bootstrap run) but then either significantly slowed (30 ‘stagnating’ 
states) or began to reverse (11 ‘reversing’ states) (Fig. 2a). In the remain-
ing seven states, either early trends were not declining, trends were not 
statistically different between early and recent periods, or declines 
accelerated between periods.

We find that wildfire smoke statistically significantly influenced 
recent trends in annual average total PM2.5 in 35 states, representing 
73% of all CONUS states. Pooling across all smoke-influenced CONUS 
states, we calculate that since about 2016, smoke has added an aver-
age of 0.69 μg m−3 to PM2.5 concentrations (95% confidence interval: 
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Fig. 1 | National and regional trends in ambient concentrations of PM2.5 
show steady declines through 2016 and then stagnation or reversal. Grey 
lines in each subplot are annual average regional or CONUS concentrations of 
PM2.5 averaged over monitoring stations reporting consistently over the period 
in each US climate region32,33. Regional and national averages are computed 

from monitoring stations reporting over 50 days per year for at least 15 years to 
prevent station intermittency from influencing trends. Red lines are linear fits 
to each region’s annual average time series, with separate slopes fits for before 
and after the series breakpoint, denoted as the red vertical dotted line.
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0.64–0.74) (median 0.60 μg m−3 (0.52–0.67)), equivalent to 25% (20–29%)  
of the average decline in annual PM2.5 achieved in these states between 
2000 and 2016 (median 10% (8–14%)).

In 22 of these 35 states, PM2.5 was still declining or flat in the recent 
period but would have declined faster absent smoke. These states are 
located throughout much of the US mid-west, south and east (Fig. 3). We 
calculate that since 2016, smoke added 0.47 μg m−3 (0.39–0.56) to annual 
PM2.5 concentrations in these 22 states (median), equivalent to 7% (6–8%) 
of the PM2.5 declines achieved in these states between 2000 and 2016, 
or median 1.1 (0.9–1.3) years of progress during those years (Fig. 2b,c).

In eight other states, total PM2.5 was trending significantly up since 
2016 but would have either trended up more slowly (five states) or would 
have actually trended down (three states) absent smoke. These states 
are concentrated in the west and mid-west of the USA, and we calculate  
that smoke added 0.97 μg m−3 (0.85–1.08) to PM2.5 concentrations in 

these states since 2016, equivalent to 46% (36–58%) of the median 
decline in annual PM2.5 achieved in these states between 2000 and 2016, 
or 7.1 (5.6–9.0) years of progress during that period. The remainder of 
states either had no detectable smoke influence in the recent period, 
such as many states in the northeast, or were smoke influenced in the 
recent period but did not have PM2.5 trending down in the early period 
or did not have a detectable change in PM2.5 trends, such as several 
states in the northern Rockies.

We emphasize that our measure of ‘influence’ is in regard to pollution 
trends rather than pollution levels, and that most western states have 
had substantial amplification of pollution levels due to wildfire smoke 
in certain recent years16, even if influence on trends is sometimes less 
apparent in certain locations (for example, South Dakota).

State-level estimates of pollution trends and their categorization 
regarding stagnating and/or reversing and smoke influence are largely 
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and smoke is a significant influence in most. a, Classification of states by 
trend in annual average total PM2.5 in the early (2000 to roughly 2016) versus 
the recent period (roughly 2016 to 2022); non-declining are states where 
early-period PM2.5 is not declining (‘no sig. early decline’) or where trends in 
early and recent periods are not statistically different (‘non-sig. change’). 
‘Stagnation’ includes states where declines are slower (P < 0.05) in the recent 
period relative to the early period but not statistically significantly negative, 
‘reversal’ includes states where the early trend was significantly negative and 
the recent trend was significantly positive, and accelerating (‘accel.’) includes 
states where the recent declines are faster than the early period. Numbers 
indicate states in each category, out of 48 CONUS states. An alluvial plot then 

shows the count of states in each of these categories that are smoke influenced 
in the recent period, defined as total PM2.5, having a statistically significant 
steeper slope (P < 0.05) than estimated non-smoke PM2.5. A ‘caused reversal’ is a 
recent-period trend in total PM2.5 that would have been negative absent smoke. 
b, In the 35 smoke-influenced states, the distribution of change in total PM2.5 
during the early period (blue) and change in smoke PM2.5 during the recent 
period (orange). Dotted lines are medians across states and solid lines are 
means. c, Ratio of recent-period smoke-attributed PM2.5 increase to 
early-period total PM2.5 decline, representing the percent of early-period 
progress in reducing total PM2.5 concentrations that was undone by smoke in 
the recent period; the dotted red line is the median across states and the solid 
line is the mean.
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robust to alternate estimation samples and approaches, including 
using stations that report in as few as 5 years or only in nearly all years, 
and using region-specific sample breakpoints for trend estimation 
(Extended Data Fig. 4 for trend estimates, Extended Data Table 2 and 
Extended Data Figs. 5 and  6 for categorizations). Region-specific tests 
identify trend breaks for average PM2.5 within a few years of 2016 in most 
states, but suggest that breaks might have been earlier in some western 
states (Extended Data Fig. 6). Results are only moderately sensitive to 
whether one fits a single piecewise regression with a change in slope 
at the breakpoint (our main model) or fits separate models on either 
side of the breakpoint; discontinuous trend estimates suggest that 39 
of 48 states experienced smoke-influenced changes in PM2.5 trends. 
Estimates are most sensitive to dropping observations from 2021, which 
was a heavily smoke-influenced year in our sample; without 2021 in 
the sample, we estimate that 18 out of 48 states are ‘smoke influenced’ 
(Extended Data Table 2).

Wildfire influence on daily PM2.5 extremes
By 2010, most states in the central, eastern and southern USA saw the 
near-elimination of days on which PM2.5 concentrations exceeded 
35 μg m−3 (Extended Data Fig. 3). Thus, there was an observed trend 
break in extreme smoke PM2.5 in these states, but these breaks were 

driven by states hitting zero extreme pollution days, thus eliminating 
the opportunity for further declines. By contrast, most states in the 
western USA have seen consistent, if variable, increases in the number 
of extreme days since 2010.

We find substantial smoke influence on trends in extreme PM2.5 days 
in western and mid-western states. In 18 states, we find clear evidence 
that, since 2012, the observed increase in days above 35 μg m−3 would 
have been smaller without smoke (Extended Data Fig. 3). In the remain-
ing 30 states, we did not detect an influence of smoke on recent trends 
in daily extremes. These counts are robust to alternate samples, break 
years and estimation approaches (Extended Data Fig. 7), although, as 
with mean PM2.5, excluding 2021 substantially reduces the number of 
smoke-influence classifications.

We then calculate the proportion of days in which wildfire smoke 
was the cause of the threshold exceedance—that is, days in which the 
35 μg m−3 threshold would not have been exceeded absent wildfire 
smoke on that day—using the sample of Environmental Protection 
Agency (EPA) stations with at least 15 years of data with more than 50 
observations per year during 2000–2022. As station intermittency 
could still affect estimates by overweighting certain years, we first cal-
culate state-year averages and then average these to get state averages 
over a specified time period. From 2006 to 2010, in no states did wildfire 
smoke cause more than 25% of daily 35 μg m−3 exceedances (Extended 
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Data Fig. 8). Between 2011 and 2022, wildfire smoke caused at least 25% 
of exceedances in seven states (Washington, Oregon, Montana, Idaho, 
Nevada, North Dakota and South Dakota). In the the last 3 years of the 
sample (2020–2022), wildfire smoke caused at least 25% of daily exceed-
ances in 21 states and caused more than 75% of exceedances in four 
states (Washington, Oregon, Montana and Idaho). We conclude that 
wildfire smoke has been a substantial cause of increases in daily PM2.5 
extremes throughout most of the West, and that the influence of smoke 
on extremes now extends beyond the influence uncovered in previous 
analyses13, which discerned influence only in the Pacific northwest.

Historical and future climatic influence
The recent rapid uptick in wildfire activity and resulting upward pressure 
on annual and extreme PM2.5 concentrations throughout the western  
USA raises the question of whether recent PM2.5 trends are likely to 
continue or whether they were driven by idiosyncratic variability in  
climatic conditions that are unlikely to persist. Many studies have 
sought to understand climatic drivers of recent increases in fire activity 
and to project future changes in these drivers. Together, these studies 
provide strong evidence that interannual variation in climate-related 
factors such as fuel aridity and fire weather are a primary driver of 
recent variation in fire activity, and that projected future changes in 
these variables from global climate models (GCMs) indicate that—
absent intervention—fire activity is likely to further increase as the 
climate warms7,23, although the magnitude of that increase is sensitive 
to the climate variable used to project changes in wildfire activity24. 
Using a variety of modelling approaches, studies also relate projected 
increases in wildfire activity to potential changes in surface air quality 
over the next century, finding large possible increases in average and 
daily extreme PM2.5 concentrations25,26.

To further corroborate these results, we calculate annual summertime 
(May to September) average vapour pressure deficit (VPD) over western 
US forests, and relate these values to our measures of annual average 
smoke PM2.5, using all available monitoring stations across the western 
USA (defined here as all states in the CONUS west of, and including,  
New Mexico, Colorado, Wyoming and Montana). Summertime VPD is 

strongly related to the log of smoke PM2.5 (Fig. 4a), explaining half its 
interannual variation since 2006. The estimated relationship is robust 
to first detrending both VPD and smoke, and so is not spuriously driven 
by common time trends in both time series. VPD values have increased 
over western forests since 1980, and were at or near record maxima in 
recent years (Fig. 4b).

Using an ensemble of 34 debiased GCM projections (Methods), 
we find that projected average VPD levels over western forests by 
mid-century match or exceed recent historical extremes, even under 
low greenhouse gas emissions scenarios (Fig. 4b). Relative to observed 
VPD in the last 5 years of our sample (2018–2022), ensemble median 
projected average increases in VPD under SSP3-7.0 indicate an extra 
increase in annual average smoke PM2.5 concentrations of 3.1 μg m−3 by 
2050, on the basis of the log-linear relationship in Fig. 4a. This projected 
increase represents an annual growth rate in smoke PM2.5 in future 
years (roughly 0.1 μg m−3 yr−1) that is nearly equivalent to the annual 
growth rate observed during the 2016–2022 period in these western 
states (0.12 μg m−3 yr−1). The ensemble mean projected change in smoke 
is more than twice these median estimates, a result of the estimated 
exponential relationship between VPD and smoke PM2.5. These results 
indicate that recent trends in smoke PM2.5 will probably continue under 
a warming climate. However, we warn that such projections assume 
that future smoke-VPD relationships will mirror past relationships, 
which might not be the case if widespread wildfires or human fuels 
management limit future fuel abundance. More detailed dynamic and 
spatially explicit modelling is critically needed to better understand 
how smoke will evolve under future climate.

Discussion
Approaches to air quality regulation have historically been built on 
two primary facts: most pollutant concentrations were the results 
of emissions tied directly to controllable human activity, and the 
sources of these emissions tended to be locally or regionally proxi-
mate to the population that they affect. Regulation based largely on 
these facts, such as the Clean Air Act, have contributed substantially 
to the remarkable decadal improvements in air quality averages and 
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is ensemble median. Mid-century ensemble median projected values across all 
emissions scenarios exceed recent multi-year VPD averages and are as large or 
larger than recent historical extremes, suggesting that smoke PM2.5 is likely to 
continue to increase absent of extra intervention.
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extremes observed throughout the USA through the early 2010s (ref. 2)  
(Fig. 1 and Extended Data Fig. 3). These facts have also led to calls for 
location-specific approaches to reducing remaining pollution burdens 
and eliminating remaining disparities in exposures across socioeco-
nomic groups27. At present, EPA is in the process of reviewing and revis-
ing the level of permitted ambient PM2.5 under the Clean Air Act on the 
basis of updated scientific recommendations of 8–10 μg m−3 annual 
average PM2.5 (ref. 28).

We show that recent increases in wildfire smoke have substantially 
slowed or reversed improvements in ambient PM2.5 concentrations 
throughout much of the USA, with widespread recent influence on 
annual average PM2.5 concentrations and regional influence on daily 
PM2.5 extremes. These increases in wildfire smoke, which we and oth-
ers show are expected to continue under a warming climate, subvert 
the logic of traditional, regionally based air quality regulation focused 
on control of anthropogenic emission sources and could undermine 
location-specific approaches to reducing pollution burdens. This is 
because with wildfires, the emissions source is often not under the 
control of the affected jurisdiction: increased surface pollutant con-
centrations in one location can originate from fires that are hundreds 
or thousands of kilometres away22, and these fires have a more indi-
rect—albeit substantial—link to human activity. Whereas more recent 
US rule making, such as the Cross-State Air Pollution Rule, recognizes 
that criteria pollutants often cross-state boundaries, such regulation 
at present only pertains to large power plants in 27 states in the Eastern 
USA. Further, wildfire smoke remains explicitly exempted from both 
local and transboundary attainment rules under the Clean Air Act, 
while, at the same time, proposed approaches to better managing 
wildfire and wildfire smoke, by means of greater use of prescribed fire, 
are subject to regulation under the Act because they are considered 
anthropogenic emissions sources29,30. The growing influence of wild-
fire smoke on ambient PM2.5 trends that we document suggests that a 
continuation of this current regulatory approach could increasingly 
fail to protect public health from poor ambient air quality.

New approaches will probably be needed to address the growing influ-
ence of wildfire smoke on air quality. These could include large-scale 
investment in fuels management to reduce extreme wildfire risk, as 
recently proposed by the US Forest Service29; revision to key air qual-
ity regulation such that air quality exemptions during smoke days are 
only granted if efforts have been made to reduce wildfire risk; a default 
stance (or ‘rebuttable presumption’) that prescribed fire smoke emis-
sions are exempt from regulation under the Clean Air Act, especially if 
annual average regulatory PM2.5 standards are lowered; and expansion 
of the geographic scope of regulatory implementation plans to include 
both source and affected jurisdictions and/or a shift in focus of air pol-
lution programmes towards exposure rather than emission reduction, 
indicating large investment in indoor filtration to protect individuals 
and communities from the wildfire smoke events that increasingly 
occur6,17,31. Given the complexity of wildfire smoke management, all 
these measures may be required to avoid significant negative effects 
on public health. Absent of these or other interventions, wildfires’ 
contribution to poor air quality and adverse health effects will probably 
continue to grow as the climate continues to warm.
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Methods

Isolating wildfire smoke PM2.5

We measure total PM2.5 at the daily level using data from 2,498 EPA air 
quality monitoring stations located throughout the CONUS, where 
station-day average PM2.5 is calculated over all observations from moni-
tors at a station location (Extended Data Fig. 1)34,35. To understand when 
smoke from fires may be affecting ground pollution levels, we follow 
earlier work14,16,36 and construct a binary classification of smoke days 
for each station-day using data on smoke plumes from the National 
Oceanic and Atmospheric Administration hazard mapping system 
(HMS)37, which are analyst-identified plume boundaries based on visible  
bands of satellite imagery38–40. A station-day is classified as a smoke 
day if it falls within a smoke plume on a given day. The first full year for 
which the HMS plume data are available is 2006, which limits the start 
date of our smoke estimates.

We then combine ground station measurements with this classi-
fication of smoke days to define daily time series of smoke PM2.5 at 
each station. We first define PM2.5 anomalies as deviations from recent 
month- and location-specific median values on non-smoke days

PM = PM − PM , (1)idmy idmy imy
NS

where PMidmy is the PM2.5 at station i on day d in month m and year y, and 
PMimy

NS  is the 3-year location- and month-specific median PM2.5 on non-
smoke (NS) days. This median is calculated as

(2)i I m M Y y YPM = median({PM | = , = , − 1 ≤ ≤ + 1, smoke = 0}),IMY idmy idmy
NS

with smokeidmy a binary variable indicating smoke-day classification, 
or when smoke may be affecting air pollution levels. We use medians  
rather than means to prevent days with extreme PM2.5 that are not 
smoke days from affecting the background PM2.5 estimates, as is occa-
sionally the case in our data. Further, by using 3-year medians, we allow 
the measure of background non-smoke PM2.5 to evolve over time in 
each location to capture trends in non-smoke PM2.5, which include 
the many other changing sources of anthropogenic emissions. We 
then define smoke PM2.5 on each station-day as the anomaly relative 
to the median if there was a plume overhead; this allows negative 
smoke values on days when total PM2.5 was below median PM2.5 on 
a day with a plume overhead, which in our data occur on 2.36% of all 
station-days. We also tested robustness to bottom-coding smoke at 
zero, that is, setting negative values of smoke PM2.5 to zero, and find 
that this yields higher classifications of smoke influence (Extended 
Data Table 2). Finally, we calculate non-smoke PM2.5 on each station-day 
as the difference between total PM2.5 on that day and estimated smoke 
PM2.5 on that day.

Our approach to isolating smoke PM2.5 at monitoring stations is similar  
to other recent work14,16,36, and for it to successfully isolate wildfire’s 
contribution to surface PM2.5, it must be the case that the HMS plumes 
accurately describe the location of wildfire smoke on a given day and 
that the presence or absence of a plume is not correlated with other 
non-wildfire sources of variation in surface PM2.5. To the first concern, 
we find in our data that having a smoke plume overhead is associated 
with an average 4.67 μg m−3 increase in PM2.5 after controlling for 
station-specific averages and average differences in PM2.5 between 
states, months and years using fixed-effects regression. We also find 
that in time series for specific stations, plumes align temporally with 
spikes in ground-measured PM2.5 (Extended Data Fig. 1). We note that 
our approach does not require that plume heights or plume density 
be accurately measured by the satellite data; rather, we only need the 
plume data to tell us whether there is any smoke in the atmospheric  
column, and then the magnitude of the ground-measured PM2.5 anomaly  
under the plume will tell us whether this smoke is mixing to the surface 
and how much it is affecting surface pollutant concentrations.

To the second concern about correlated time-varying non-smoke 
PM2.5 sources, Childs et al.16 analysed whether this method of construct-
ing smoke PM2.5 from ground station anomalies is indeed picking up 
PM2.5 from smoke and not from other local time-varying sources of PM2.5 
unrelated to smoke by using speciated data from Interagency Monitor-
ing of Protected Visual Environments (IMPROVE) and Chemical Specia-
tion Network monitors. The authors found that species most likely to 
be present in smoke PM2.5—in particular organic carbon—rose on smoke 
days but other non-fire-associated species (for example, elemental 
carbon) did not rise. These results provide supporting evidence that 
our approach to isolating smoke PM2.5 from non-smoke PM2.5 is indeed 
picking up wildfire-sourced PM2.5 and not some other correlated PM2.5 
source. Nevertheless, our measure of smoke days may still be a con-
servative estimate of the locations with air quality affected by smoke: 
there probably remain undetected plumes under cloud cover, during  
nighttime periods when satellite-based plume segmentations are una-
vailable or on days when smoke is diffuse and difficult to identify in 
satellite imagery14,22. This will cause us to under-attribute PM2.5 to smoke 
and thus understate the influence of wildfire smoke on total PM2.5.

Our main analysis uses data from all EPA monitors between January 
2000 and December 2022. Because we use data from fixed pollution 
stations to measure overall PM2.5 trends and wildfire influence on them, 
our data will be representative of locations where stations are located. 
As stations are purposefully located in populated areas to assess Clean 
Air Act attainment, our estimates should be largely representative 
of CONUS populations. However, they will be less accurate for many 
rural areas in the western USA where stations are less common but in 
which other estimates suggest wildfire influence on PM2.5 is often the 
strongest16. Our implicitly population-weighted estimates thus prob-
ably understate the influence of smoke on total PM2.5 trends relative 
to an area-weighted estimate, and could understate wildfire influence 
in the rural West.

Finally, our approach to estimating trends in total, smoke and 
non-smoke PM2.5 that combines satellites and ground stations is a com-
plement to other potential approaches to measuring the influence of 
smoke on air quality trends, including approaches that rely on statistical 
analysis of station data alone13 or that use emissions inventories and 
chemical transport models14,15. An advantage of our approach relative  
to solely station-based approaches is that satellite-derived plume data 
provide substantial information on the location of wildfire smoke 
plumes, and this information helps isolate the influence of wildfires 
from other time-trending sources of pollution exposure. An advantage 
of our approach relative to transport-based approaches is that it does 
not depend on uncertain wildfire emissions inventories, which have 
been shown to have large influence on predicted pollutant concen-
trations41. Machine-learning based approaches for total and wildfire  
PM2.5, and the gridded products they generate, provide an alter-
nate approach16,42,43, yet these products are generally estimated with  
some time lag and do not yet provide estimates for the most recent, 
heavy wildfire smoke years.

Estimating trend breaks and period-specific trends
To split our data into early and recent periods, estimate trends in total 
and non-smoke PM2.5 in each period, and test whether slopes differ 
across periods or pollutants, we use the following bootstrap procedure. 
First, we restrict our sample to all available stations in CONUS that meet 
an inclusion criteria, which in our main sample is having more than 50 
daily observations per year for at least 15 years (we test robustness to 
this criteria as described below). We draw a stratified random sample 
of stations from this dataset, stratifying on state and sampling with 
replacement. We use state-stratified random sampling to ensure that 
each state has the same influence on the pooled estimate in each boot-
strap, and sampling monitoring stations with replacement mimics the 
idea of an (unobserved) superpopulation of possible pollution monitor 
locations in each state, of which we observe only a sample.
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Using this sample, we then follow ref. 21 and implement an algorith-

mic approach to estimating breakpoints in time series data. Under this 
approach, a breakpoint initialization value is chosen and the algorithm 
searches until the change in the estimated breakpoint falls within a 
prespecified tolerance level. Formally, we search for a single breakpoint 
ψ* by fitting the following iterative regression on the station-year data:

y α δ z δ z ψ z ψ γ z ψ ε= + + ( − ) { > } − { > } + (3)it i t t t t it1 2
∼ ∼ ∼

� �

where y is total PM2.5 at station i in year t, αi is a vector of station fixed 
effects (intercepts), zt is a numeric variable indexing time, 

∼
ψ  is the 

iteratively updated candidate breakpoint, γ measures the gap at a given 
iteration of breakpoint ψ

∼
 between the two fitted lines on either side of 

the breakpoint and 
∼

z ψ{ > }t�  is the indicator function, and δ1 and δ2 are 
estimated period-specific time trends. The breakpoint is then updated 
between iterations, with ψ ψˆ= +

γ
δ2

∼ . As the algorithm converges, the 
ratio γ

δ2
 approaches zero, with the algorithm ceasing once it falls within 

a prespecified tolerance, which we set to 1 × 10−8 (see Supplemental 
Methods for a discussion of robustness to weaker and stronger toler-
ances). We also constrain the algorithm to search only between the 
20th and 80th quantile of the time series for CONUS breakpoints and 
between the 15th and 85th quantile for regional breakpoints, prevent-
ing it from choosing breakpoints in the first or last few years of the 
sample. This was done to prevent the pre- and postperiod model fits 
from having to use only a very small slice of the sample, which could 
lead to very steep, imprecisely estimated slopes that are both noisy 
and a poor predictor of future trends. The model sees only total PM2.5 
data when estimating the breakpoint. Less strict quantile constraints 
were chosen for the regional breakpoints to account for variation in 
possible breaks across regions. See Supplemental Methods for further 
details on algorithm implementation.

Once a breakpoint is chosen on the pooled data, we then fit general-
ized linear maximum likelihood panel regressions44 to the same sample 
of station-year observations, pooling stations within a given region of 
interest (typically, state) and allowing slopes to differ on either side 
of the prescribed breakpoint. Formally, we estimate equations of the 
following form separately for both total and non-smoke PM2.5:

α β z ψ z ψ β z ψ z ψ εPM = + ( − *) { ≤ *} + ( − *) { > *} + (4)its is s t t s t t its1 2� �

where ψ* is the estimate of the breakpoint generated from the algorithm 
described above. The subscript i indexes pollution station, t is the year 
and s is the type of particulate matter (total or non-smoke PM2.5). {}�  is 
the indicator function, αis represents a station-PM2.5 type intercept 
(that is, separate intercepts for each station and PM2.5 type of total or 
non-smoke) and β s1  and β s2  are the estimates of early and recent-period 
slopes for PM2.5 type s, pooled across all stations i. This equation is 
estimated either using all stations in CONUS, or all stations in a given 
state or region, yielding a set of estimates of state- and period-specific 
trends in total and non-smoke PM2.5.

We construct 1,000 stratified bootstrap samples, then repeat this 
entire procedure for each bootstrap, generating 1,000 breakpoint esti-
mates and 1,000 estimates of the slopes for each state and for CONUS. 
The distribution of these estimates (Extended Data Fig. 2) thus accounts 
for uncertainty in both the timing of the breakpoint as well as uncer-
tainty in the slopes conditional on a chosen breakpoint. The analysis 
is repeated separately for annual average PM2.5 and for the proportion 
of days in which PM2.5 is greater than 35 μg m−3 as outcomes. For annual 
average PM2.5, our maximum likelihood estimator is equivalent to  
estimating equation (4) with ordinary least squares; for annual counts 
of extreme days, we instead use a Poisson fixed-effects model to find the 
breakpoint and fit slopes, with counts of extreme days per year as the 
outcome and log of number of station-year observations as an offset.

We then use these bootstrapped distributions of slope estimates to 
implement statistical tests: whether early-period (β1) and recent-period 

(β2) slopes in total PM2.5 are statistically different and whether the 
recent-period slope (β2) is different from zero, to classify states as stag-
nating, reversing, accelerating or not significantly changing; and 
whether slopes in recent-period total PM2.5 (β2) and non-smoke PM2.5 
(β′

2) are different, to classify smoke influence. Differences are classified 
as statistically significant if 97.5% of the distribution of differences in 
slopes (for example, β β−1 2) is on one side of zero, that is, P < 0.05 on a 
two-tailed test. Details on classifications are provided in Extended Data 
Table 1.

We test robustness in various ways: to alternate station inclusion 
criteria, to the inclusion or exclusion of recent very-high-wildfire years 
and to the use of regional rather than national breakpoints, using the 
nine climate regions in Fig. 1 to define the regions within which separate 
breakpoints are estimated. As shown in Extended Data Figs. 5–7 and 
Extended Data Table 2, results are largely robust to these choices. A few 
factors contribute to the observed variation in results. First, stricter sta-
tion inclusion criteria drive down sample size and thus tend to decrease 
power and spatial representativeness. Second, some inclusion criteria 
yield bootstrap samples with higher variance in the distribution of 
estimated breakpoints. Samples with a higher percentage of earlier 
breakpoints will tend to estimate more similar pre- and postbreak 
slopes, resulting in more stagnation and fewer reversal classifications. 
Third, removal of 2021 has the most influence on estimates, and remov-
ing it from the analysis results in 17 fewer states classified as smoke 
influenced for average annual PM2.5 and seven fewer states classified 
as smoke influenced for portion of days in which PM2.5 is greater than 
35 μg m−3 (Extended Data Table 2 and Extended Data Fig. 7). Given that 
VPD over western forests is a strong driver of wildfire smoke, that 2021 
was a year of historically high VPD over western forests and that future 
VPD averages are likely to exceed these historical extremes (Fig. 4), 
inclusion of 2021 in the sample is arguably important for understanding 
recent trends in wildfire smoke. Nevertheless, sensitivity of estimates 
to its exclusion suggests the need to further assess wildfire smoke’s 
contribution in coming years.

We also study how results change if, instead of fitting the continu-
ous model in equation (4) that forces fitted lines to intersect at the 
breakpoint, we fit a model that allows period-specific intercepts, which 
does not force intersection at the breakpoint. Whereas such a model 
is perhaps less sensible for estimating whether trends in total PM2.5 
changed between early and recent periods, it is arguably more sensible 
for estimating whether recent-period total versus non-smoke PM2.5 
trends are different; a researcher interested in only the latter question 
might sensibly start by restricting the sample to the years of inter-
est to estimate the trends (for example, dropping years before 2016), 
which is equivalent to allowing period-specific intercepts. Under this 
discontinuous model, results are stronger, with 39 states classified as 
smoke influenced (Extended Data Table 2).

Finally, we calculate the percent of previous air quality improvements 
that were undone by recent smoke increase by dividing the estimated 
increase in smoke PM2.5 in the recent period by the estimated decrease 
in total PM2.5 in the early period. We bottom-code this value at zero for 
the small number of states where total PM2.5 was not improving during 
the early period, and top-code at 100% for the small number of states 
where recent smoke PM2.5 increases exceeded early-period total PM2.5 
increases. We calculate the mean or median percentage reversal across 
all smoke-influenced CONUS states in each bootstrap, then compute 
confidence intervals using the distribution of estimates across the 
1,000 bootstraps.

Climatic drivers of smoke
Building on earlier work7, we calculate the annual average VPD during  
the warm season (May–September) over forests in western states  
(as defined above) and relate summertime VPD to the log of annual 
average smoke PM2.5 as measured across monitoring stations in the 
same states using linear regression, that is:



α β εlog(smokePM ) = + VPD + (5)t t t

Estimates of β are nearly identical whether the equation is estimated 
with an extra time trend (β  ̂= 14.3, standard error (s.e.) = 2.7) or without 
one (β  ̂= 14.6, s.e. = 3.9); in the former case, the impact of VPD on smoke 
is estimated using deviations in smoke about a time trend on deviations 
in VPD, thus accounting for any other variable that is trending over 
time and correlated with both VPD trends and smoke trends. We chose 
VPD as the main climatic variable because it is frequently used as a 
primary fire weather index in previous research, is simple to calculate 
from temperature and relative humidity, and is highly correlated with 
other fire weather and dryness measures7,45,46. We calculate average 
seasonal VPD from daily 4 km-resolution surface temperature and 
relative humidity over the western USA from GRIDMET47. We chose to 
directly calculate VPD from relative humidity and surface temperature 
(instead of using VPD archived in GRIDMET) to be consistent with the 
VPD values calculated for future climate projections (as detailed below). 
The average VPD over the western USA is then calculated as the weighted 
average of VPD for each grid cell, weighted by the forest coverage  
percentage of each grid cell. VPD calculation is performed with the R 
package bigleaf.

To quantify future change in VPD, we use the projected temperature 
and relative humidity from the Coupled Model Intercomparison Project  
Phase 6 GCM ensemble, run under different emissions scenarios. Similar  
to the historical analysis, we first calculate monthly VPD values for each 
climate model grid cell falling over western US forests and then calculate  
the annual average VPD over western USA during May to September 
for a given model and emissions scenario. We evaluate the changes 
in VPD across three commonly used climate scenarios constructed 
as pairs between the shared socioeconomic pathways (SSPs) and the 
representative concentration pathways: SSP1-2.6, SSP2-4.5 and SSP3-
7.0. Consistent with the latest Intergovernmental Panel on Climate 
Change report and recommendations from ref. 48, we use SSP3-7.0 
as the baseline high emission scenario and SSP2-4.5 and SSP1-2.6 as 
the medium and low emission scenarios. In total, we use projections 
from 34 GCMs with available temperature and relative humidity at the 
monthly level for the historical and three climate scenarios.

To remove potential level bias from each GCM, simulated VPD values 
are debiased on the basis of the calculated difference between the simu-
lated values in the historical simulations and the observational VPD val-
ues (1979–2014) for each GCM. To reduce the uncertainty and account 
for internal variability, we summarize mid-century VPD changes as 
the average VPD values between 2040 and 2060 for each GCM and 
emissions scenario. We select one ensemble variant for each of the 34 
models, using the first ensemble variant of each model (r1i1p1f1) when 
possible and use the other ensemble variants if r1i1p1f1 is not available.

To estimate potential changes in future smoke PM2.5 under increasing 
VPD, we combine estimates from the log-linear model in equation 5 with 
recent (2020–2022) or mid-century VPD averages. Predicted smoke 
PM2.5 is calculated as:

asmokePM = e (6)s
α β

0
+ VPDŝ ̂ ̂

where a0̂  is the ‘smearing estimate’ ∑a n= e /i
n ε

0 =1
î ̂  that can accommo-

date non-normally distributed errors49, and s indexes warming scenario. 
Predictions for future annual average smoke PM2.5 under SSP1-2.6,  
SSP2-4.5 and SSP3-7.0 scenarios are 1.6, 3.2 and 3.8 μg m−3 for the  
western USA, compared to 0.74 for average VPD over the last 5 years 
(2018–2022). Thus in the highest warming scenario, this simple model 
predicts an increase in annual average PM2.5 from smoke of 3.1 μg m−3 
by mid-century, relative to an average across the last five (historically 
extreme) years. Owing to the exponential relationship between smoke 

PM2.5 and VPD, the predicted mean change in smoke across the climate 
model ensemble is more than twice the median for each emissions 
scenario. More detailed work is needed to understand whether such 
changes are plausible.
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Extended Data Fig. 1 | Pollution stations and method used to construct 
non-smoke PM2.5 estimates. a. Example of total and non-smoke partitioning 
for a single station in CA in 2020. On days without a smoke plume overhead  
(no grey points), all PM2.5 is assumed to be from non-smoke sources. On days 
with a plume overhead (grey points), PM2.5 anomalies from the non-smoke 
month- and station-specific 3-year median are attributed to smoke, and total 

PM2.5 minus anomalies are attributed to non-smoke (blue). b. Annual average 
total and non-smoke PM2.5 for the same station are produced by aggregating 
daily total observed PM2.5 (black) and the daily estimates of non-smoke PM2.5 
(blue). c. Locations of PM2.5 stations throughout the contiguous US. Stations 
are coloured by the number of years with at least 50 observations.
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Extended Data Fig. 2 | Distribution in estimated breakpoints for different 
sample restrictions and/or statistical specifications. a. Annual average 
PM2.5. b. Extreme (> 35 µg/m3) daily PM2.5. Histograms show distribution of 
estimated breakpoints for different sample restrictions, pooling data from all 
CONUS monitors. Panels labeled with number of observations and years are 
various sample restriction choices, while those labeled “Drop” retain our 
primary inclusion criteria – more than 50 observations per year for at least 15 

years – but remove one of the last three years of the sample to understand their 
influence on estimates. Discontinuous models allow for separate intercepts on 
either side of the break year. Strong bunching in the discontinuous models for 
average PM2.5 occur because only integer years are permitted as candidate 
breakpoints. “Positive smoke PM2.5 anomalies” tests the sensitivity of results to 
bottom-coding daily smoke PM2.5 estimates to zero, i.e., not allowing negative 
smoke PM2.5 anomalies.



Article

Extended Data Fig. 3 | Influence of wildfire smoke on daily PM2.5 extremes is 
mainly concentrated in states in the West, Northwest, and Great Plains. 
Black lines in each plot show percent of days in each state-year where PM2.5 
values exceed 35 µg/m3, calculated using the sample of stations with over 50 

observations in at least 15 years, as in Fig. 3. Blue lines show estimated percent 
of days that exceed 35 µg/m3 after smoke PM2.5 has been removed. Vertical 
dotted line indicates median CONUS-wide estimated breakpoint (2012).
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Extended Data Fig. 4 | Sensitivity of estimated differences in slope 
coefficients used to classify states. Left column shows differences in early 
(β1) and recent period (β2) estimates of changes in total PM2.5, and the 
confidence interval on estimated differences, that are used to classify states 
into stagnating/reversing categories. Middle column shows differences in 

recent period total PM2.5 (β2) and non-smoke PM2.5 (β′
2) slopes that are used to 

classify states as smoke-influenced. Right column shows same, but for recent 
period changes in extreme days. Colors match sample as denoted in the legend 
at right.



Article

Wyoming
Wisconsin

West Virginia
Washington

Virginia
Vermont

Utah
Texas

Tennessee
South Dakota

South Carolina
Rhode Island
Pennsylvania

Oregon
Oklahoma

Ohio
North Dakota

North Carolina
New York

New Mexico
New Jersey

New Hampshire
Nevada

Nebraska
Montana
Missouri

Mississippi
Minnesota

Michigan
Massachusetts

Maryland
Maine

Louisiana
Kentucky

Kansas
Iowa

Indiana
Illinois
Idaho

Georgia
Florida

Delaware
Contiguous US

Connecticut
Colorado
California
Arkansas

Arizona
Alabama

Main (50 obs, 15 years)

50 obs, 5 years

50 obs, 10 years

100 obs, 15 years

Drop 2020

Drop 2021

Drop 2022

Regional breaks

Discontinuous

Positive
 smoke

PM2.5 anomalies

a
3 30 11

6 32 7

5 29 10

6 29 9

4 30 11

5 31 6

4 27 14

4 27 14

5 34 6

3 31 10Positive smoke
PM2.5 anomalies

Discontinuous

Regional breaks

Drop 2022

Drop 2021

Drop 2020

100 obs, 15 years

50 obs, 10 years

50 obs, 5 years

Main (50 obs, 15 years)

0 8 16 24 32 40 48
Number of states

total PM2.5−trend classification

reversal

stagnation

acceleration

non−sig. change

no sig. early decline

b

Extended Data Fig. 5 | Sensitivity of total PM2.5-trend classification to different sample restrictions and/or statistical specifications. a. State-specific total 
PM2.5-trend classification under alternate estimates. b. Counts of states in each classification. Model specifications and samples match those in Extended Data Fig. 2.



Extended Data Fig. 6 | Sensitivity of smoke-influence classification to 
different sample restrictions and/or statistical specifications. a. State- 
specific smoke-influence classification under alternate estimates. b. Counts of 
states in each classification. Model specifications and samples match those in 

Extended Data Fig. 2. c. Regional trends in total and non-smoke PM2.5, and 
regional smoke-influence classifications with region-specific breakpoint 
estimates (vertical dashed lines).
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Extended Data Fig. 7 | Sensitivity of smoke-influence classification on 
portion of extreme days (> 35 µg/m3) to different sample restrictions.  
a. State-specific smoke-influence classification under alternate estimates.  

b. Counts of states in each classification. Model specifications and samples 
match those in Extended Data Fig. 2.
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Extended Data Fig. 8 | Distribution of proportion of extreme days due to 
wildfire smoke by state. a. Density plots show, for each year, the distribution 
across CONUS states of the proportion of days above 35 µg/m3 due to smoke, i.e., 
days that would have had concentrations < 35 µg/m3 were smoke not present. 
Tick marks show values for individual states. b. Cumulative distributions of the 

number of states where the proportion of extreme PM2.5 days due to wildfire 
smoke in a time period met or exceeded a given percentage threshold. For 
instance, the intersection of a vertical line drawn at 50% and each of the depicted 
lines in the plot would provide estimates of the number of states in each period 
where at least 50% of extreme days were due to wildfire smoke.
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Extended Data Table 1 | Definition of trend groupings

We subdivide states into “stagnation” states and “reversal” states based on comparison of trends in total PM2.5 between early and recent periods, and then subdivide those based on whether 
they were smoke-influenced. Coefficients refer to period-specific estimated slopes on PM2.5: β1 and β2 are early and recent-period slopes on total PM2.5. β1′ and β2′ are corresponding period 
slopes for non-smoke PM2.5. Strong inequalities (greater or less than) must be statistically significant (p < 0.05) for condition to be met.



Extended Data Table 2 | Counts of states in different classifications under different sample restrictions and/or statistical 
specifications
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